Feature Screening via Distance Correlation Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Screening via Distance Correlation Learning.

This paper is concerned with screening features in ultrahigh dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be implemented as easily as the sure independence screening procedure based on the Pearson correlation (SIS, for short...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Acoustic Feature Learning via Deep Variational Canonical Correlation Analysis

We study the problem of acoustic feature learning in the setting where we have access to another (non-acoustic) modality for feature learning but not at test time. We use deep variational canonical correlation analysis (VCCA), a recently proposed deep generative method for multi-view representation learning. We also extend VCCA with improved latent variable priors and with adversarial learning....

متن کامل

Distance-Based Network Recovery under Feature Correlation

We present an inference method for Gaussian graphical models when only pairwise distances of n objects are observed. Formally, this is a problem of estimating an n× n covariance matrix from the Mahalanobis distances dMH(xi,xj), where object xi lives in a latent feature space. We solve the problem in fully Bayesian fashion by integrating over the Matrix-Normal likelihood and a MatrixGamma prior;...

متن کامل

Supervised Dimensionality Reduction via Distance Correlation Maximization

In our work, we propose a novel formulation for supervised dimensionality reduction based on a nonlinear dependency criterion called Statistical Distance Correlation, [Székely et al., 2007]. We propose an objective which is free of distributional assumptions on regression variables and regression model assumptions. Our proposed formulation is based on learning a lowdimensional feature represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2012

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2012.695654